If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-19x+112=0
a = -16; b = -19; c = +112;
Δ = b2-4ac
Δ = -192-4·(-16)·112
Δ = 7529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{7529}}{2*-16}=\frac{19-\sqrt{7529}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{7529}}{2*-16}=\frac{19+\sqrt{7529}}{-32} $
| 4s^2+16=s^2+16 | | 4c+26=c+29 | | z-5/6=10 | | 0.87^x=(19/574) | | -5r+7+10r=-2r-7 | | 0.04(y-5)+0.10y=0.20y-0.5 | | 16.5+p=20 | | -11+3=(b+5)=7 | | 5u-92=3u-44 | | 9x-4.9=2 | | 4b-93=b | | 15=-3(w-21) | | x/6.2=0.2 | | m+8=3m–6 | | 4p-70=2p+30 | | 4x-(7)=25 | | -1/4=-5/2y-2/3 | | X+4=15x=11 | | -0.6p+9.59=-9.9p-7.15 | | 2(k-6)^2+11=29 | | 2.5^x=15.625 | | 1.5^2x-6=-9x | | -1/4=-7/3y-1/2 | | -c-8=2c+10 | | 33+c=12c | | 97=7j+27 | | -3t-8=-t+10+t | | -2.2+5y=10.3 | | -6n+3=-5+2n | | -6=2+y/4 | | 8.3-7.1d=-9.64-8.4d+8.84 | | 9=-5+x/2 |